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Abstract Accessible surface area (ASA) is the surface

area of an atom, amino acid or biomolecule that is exposed

to solvent. The calculation of a molecule’s ASA requires

three-dimensional coordinate data and the use of a ‘‘rolling

ball’’ algorithm to both define and calculate the ASA. For

polymers such as proteins, the ASA for individual amino

acids is closely related to the hydrophobicity of the amino

acid as well as its local secondary and tertiary structure.

For proteins, ASA is a structural descriptor that can often

be as informative as secondary structure. Consequently

there has been considerable effort over the past two dec-

ades to try to predict ASA from protein sequence data and

to use ASA information (derived from chemical modifi-

cation studies) as a structure constraint. Recently it has

become evident that protein chemical shifts are also sen-

sitive to ASA. Given the potential utility of ASA estimates

as structural constraints for NMR we decided to explore

this relationship further. Using machine learning tech-

niques (specifically a boosted tree regression model) we

developed an algorithm called ‘‘ShiftASA’’ that combines

chemical-shift and sequence derived features to accurately

estimate per-residue fractional ASA values of water-sol-

uble proteins. This method showed a correlation coefficient

between predicted and experimental values of 0.79 when

evaluated on a set of 65 independent test proteins, which

was an 8.2 % improvement over the next best performing

(sequence-only) method. On a separate test set of 92 pro-

teins, ShiftASA reported a mean correlation coefficient of

0.82, which was 12.3 % better than the next best per-

forming method. ShiftASA is available as a web server

(http://shiftasa.wishartlab.com) for submitting input quer-

ies for fractional ASA calculation.

Keywords Nuclear magnetic resonance � Chemical-

shifts � Machine learning � Accessible surface area � Protein

Introduction

Accessible surface area is a concept first introduced and

popularized by Dr. Frederic M. Richards and co-workers in

the early 1970s (Lee and Richards 1971; Richards 1974,

1977). It grew from the observation that certain parts of a

folded protein seemed to be impenetrable to water while

other parts were highly exposed. This differential exposure

seemed to be driven by the hydrophobicity or

hydrophilicity of individual amino acid side chains, the 3D

structure of the protein and the influence that the

hydrophobic effect had on the overall protein folding

process. Richards and colleagues also pointed out that

water molecules are not infinitely small point particles and

that the surface of a protein that was water accessible was

not equal to the van der Waals surface area but rather could

be calculated by rolling a ball of finite size (roughly the

size of an oxygen atom of 1.4 Å) over the entire van der

Waals surface of a protein. The resulting, ‘‘smoothed-sur-

face’’ defined the water accessible area or the accessible

surface area (ASA). ASA is a quantifiable property mea-

sured in square Angstroms (Å2). It can be determined for
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entire proteins or for individual residues or even atoms.

ASA can also be re-cast as a fractional accessible surface

area (fASA) that reports the percentage of ASA relative to

a fully exposed protein (or residue). This concept can be

carried further to a relative accessibility, or RSA, which is

a more qualitative measure of surface accessibility. With

the RSA concept, residues are considered buried (B), par-

tially buried (P) or exposed (E) based on their fASA.

Typically buried residues have a fASA of\0.25, partially

buried have a fASA between 0.25 and 0.5 and exposed

residues have a fASA of[0.50.

Since its first description, the concept of ASA has pro-

ven to be extremely useful for assessing the quality of

protein folds and for scoring protein structure predictions

(Benkert et al. 2008), for assessing conformational changes

upon protein or ligand binding, for calculating protein

folding energies, for determining protein–ligand binding

constants and for calculating protein enthalpy and entropy

changes (Lavigne et al. 2000). More recently, indirect

measurements of residue-specific ASAs through targeted

chemical modification or partial proteolysis have been used

to provide constraints for low-resolution protein structure

determination efforts by mass spectrometry (Serpa et al.

2014). Indeed since its first description some 40 years ago,

the concept of ASA has probably been proven to be among

the most useful concepts for understanding, comparing and

evaluating protein folds and protein functions.

Quantitative ASA measurements can only be deter-

mined from protein coordinate data (i.e. solved structures).

However, given the utility of ASA measurements as

structural constraints or for evaluating structural/thermo-

dynamic properties of proteins, there has been a growing

interest in finding ways of predicting ASA, fASA or RSA

from sequence data alone. As a result there have been a

number of published studies that describe methods for

predicting accessible surface area and relative surface

accessibility from sequence (Ahmad and Gromiha 2002;

Ahmad et al. 2003; Wagner et al. 2005; Petersen et al.

2009; Nguyen and Rajapakse 2005; Li and Pan 2001;

Pollastri et al. 2002; Chen and Zhou 2005; Naderi-Manesh

et al. 2001; Thompson and Goldstein 1996; Rost and

Sander 1994; Garg et al. 2005; Yuan and Huang 2004;

Holbrook et al. 1990; Adamczak et al. 2004). The majority

of these prediction systems rely on using multiple sequence

alignments, pairwise residue assessments and the predic-

tive power of machine-learning algorithms. The best per-

formance reported by these sequence-only methods using a

two-state (Buried, Exposed) and a three-state RSA measure

(Buried, Partially Buried, Exposed) yielded Q2 and Q3

scores of 88 and 63 % respectively (Ahmad and Gromiha

2002). For real-value ASA predictions, the best perfor-

mance so far reported used PSSM matrices from PSI-

BLAST (Altschul et al. 1997) profiles in a two-stage

support-vector regressor to achieve a correlation coefficient

between observed and calculated ASA of 0.68 (Nguyen

and Rajapakse 2005).

While these sequence-only results are promising, Rost

and Sander (1994) pointed out that surface accessibility is

less conserved in structural homologs than secondary

structure and therefore ASA would be predicted less

accurately from homology modeling. The Rost et al. study

also showed that the correlation coefficient of relative

solvent accessibility between 3D homologues (by structural

alignment) is only 0.77, whereas prediction of accessibility

by homology modeling (sequence alignment) resulted in a

correlation coefficient of about 0.68. This suggests that the

upper limit of ASA prediction that could be achieved by

sequence-only methods would yield a correlation of

0.70–0.75.

Over the last two decades it has been observed that a

number of experimentally measurable properties in pro-

teins correlate reasonably well with accessible surface

areas. For instance, folding and unfolding free energies as

measured through calorimetry appear to correlate quite

well with ASA or fASA (Myers et al. 1995). Protease

cleavage sites or protease susceptibility along with chem-

ical modification susceptibility also appears to map with

solvent accessibility (RSA or ASA) (Croy et al. 2004).

Hydrogen exchange, as measured by mass-spectrometry

(MS) or NMR also allows the identification of buried and

exposed residues in proteins (Huyghues-Despointes et al.

1999). NMR Chemical shifts also appear to be influenced

by ASA effects. The first evidence of such a phenomenon

was reported in 1994 (Wishart and Sykes 1994). Nearly a

decade later Avbeli et al. (2004) studied the effect of

secondary structure and solvent exposure on backbone

chemical shifts. They demonstrated that proton secondary

shifts have a different chemical shift distribution for sol-

vent exposed residues, particularly in smaller peptides. In a

later study by Vranken and Rieping (2009), the effect of

secondary structure and solvent exposure on chemical shift

assignments was re-examined on a large database of pro-

teins for which both reported atomic coordinates and

chemical shift values were available. There were two major

findings from this study. First, they found that non-polar

atoms have significantly larger chemical shift dispersion

and a somewhat different chemical shift distribution com-

pared to polar atoms. Secondly those atoms with greater

atomic ASA, exhibited chemical shift values that tended

towards random coil values. The relationship between

chemical shifts and ASA was actually used to develop a

significantly improved structure-based chemical shift pre-

diction algorithm, called ShiftX2 in 2011 (Han et al. 2011).

Most recently, Berjanskii and Wishart (2013) proposed a

simple formula to calculate per-residue fASA from side-

chain chemical shifts and observed a correlation of more
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than 70 % with the observed fASA values over a subset of

15 proteins.

These studies demonstrate that both sequence and

chemical shift information can be used individually to

estimate the ASA values with reasonable accuracy. Now

the question is: Can one develop more accurate fASA

estimation by more intelligently combining sequence AND

chemical shift information? Here we report the develop-

ment of a machine-learning based method that can be used

to accurately estimate per-residue fractional ASA of water-

soluble proteins using sequence and chemical shifts. After

training on a set of 30 fully assigned proteins, the perfor-

mance of the resulting model, called ShiftASA, was com-

pared with other sequence-based and chemical-shift based

methods over a test set of 65 proteins. For this test set

ShiftASA achieved a mean correlation coefficient of 0.79

compared to correlation coefficients of 0.73 and 0.59 found

for sequence-only and chemical shift-only methods

respectively. On a separate test set of 92 proteins, Shif-

tASA attained a correlation coefficient of 0.82. A number

of other statistical measures were also used to prove that

this method shows a consistently better performance than

any existing method.

Materials and methods

Dataset

A set of 30 proteins with complete experimental NMR

chemical shift assignments and available high-resolution

X-ray structures was chosen for training purposes. The list

of proteins along with their PDB and BMRB identifiers is

provided on the ShiftASA website. Note that the number of

training proteins was varied to examine any enhancement

in training and test performance. However no (or very

little) improvement was observed with an increased num-

ber of proteins. Two separate sets of 65 and 92 proteins

with available experimental chemical shifts and high-res-

olution X-ray structures were used as independent test sets.

Henceforth we shall refer to the training data set and two

test data sets as TRAIN, TEST1 and TEST2, respectively.

The list of the TEST1 and TEST2 proteins along with their

PDB and BMRB identifiers is provided on the ShiftASA

website. No two proteins shared more than 40 % sequence

identity in the TRAIN set. Similarly, no two proteins

shared more than 40 % sequence identity in the TEST1 and

TEST2 sets. The TRAIN proteins had *92 and *83 % of

their backbone and side-chain chemical shifts assigned,

respectively. The TEST1 proteins had on average *90 %

(max = 100 %, min = 49 %) and *60 % (max = 91 %,

min = 0 %) of their backbone and side-chain chemical

shifts assigned while those in TEST2 had an average of

*97.50 % (max = 100 %, min = 85 %) and *83.5 %

(max = 89 %, min = 53 %) of their backbone and side-

chain chemical shifts assigned. Note that no attempt was

made to handle missing assignments in either the training

or the test data sets. The TRAIN proteins had *49 % of

their resides in regular secondary structure while the

TEST1 and TEST2 proteins had *63 and *44 % (re-

spectively) of their residues in regularly secondary struc-

ture as assessed by STRIDE (Frishman and Argos 1995).

Computation of observed fractional ASA

Most predictive studies associated with ASA prediction

have focused on generating RSA or binary/ternary class

predictions. However, in the majority of cases, real-valued

or fractional ASA is more informative than the binary/

ternary classification of residues into buried or exposed

states. This is because the threshold for classifying residues

in a protein into two or three exposure classes is subjective

and often depends on the mean ASA over all the residues in

a particular protein (Ahmad et al. 2003). In the absence of a

universal threshold for categorical prediction of buried and

exposed states, fractional ASA (fASA) is considered to be

more reliable or useful estimation of residue-specific sol-

vation status. Therefore for this study we focused on

developing a predictor for fASA. The fractional ASA of a

residue is defined as the ratio between absolute ASA

(aASA) calculated within a three-dimensional structure and

that is observed for a central residue location in an exten-

ded tri-peptide (Ala-X-Ala) conformation, denoted as

mASA:

fASAi ¼
aASAi

mASAi

Hence, fASA values range between 0.0 and 1.0, with 0.0

corresponding to a fully buried and 1.0 to a fully exposed

residue, respectively. Absolute ASA values were calculated

using the Dictionary of Secondary Structure Prediction

(DSSP) (Kabsch and Sander 1983) program. The values of

the extended state ASAs for all 20 residues were extracted

from Eisenhaber and Argos (1993).

Mapping fractional ASA prediction as a regression

task

Given a protein with a length of n amino acids, the task is

to estimate the fASA at each residue. We initially mapped

the estimation problem as a regression task and then

employed a Stochastic Gradient Boosting Tree model to

solve the regression problem as outlined by Ridgeway

(2007) and Trevor et al. (2001). To map the problem as a

regression task we defined an error function as the square

of the difference between the observed per-residue fASA
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values and the predicted per-residue fASA values over the

length of the training set sequences. The predicted per-

residue fASA was calculated from a set of features (see

below) and expressed as function f �ðxÞ; of amino acid

position or sequence length. In stochastic gradient boost-

ing, the method approximates the function f �ðxÞ; in an

iterative fashion through fitting the solution tree in each

step that maximally reduces the expectation of the error

function. The gradient step in each iteration m (m = 1…T,

where T = total number of iterations), updates the model

according to a learning rate or a shrinkage parameter that

controls the rate at which the boosting algorithm descends

upon the error surface. For each iteration, only a fraction

p of the N training observations is randomly sampled

(without replacement) and the next solution tree is grown

with that subsample. The solution tree that is generated for

each boosting iteration is a K-terminal node regression tree.

After mapping the fractional ASA prediction problem

into a Stochastic Gradient Boosted Tree Model (SGBM),

the model was optimized on the protein data in the training

set. The ‘‘GBM’’ package (Ridgeway 2007), written in R

(R Development Core Team 2008) was used for optimizing

the training model.

Feature set

To use or develop machine-learning algorithms it is nec-

essary to extract a set of input features from the training

data that will be used to infer or calculate the desired

output (i.e. the fractional ASA). Features can either be the

raw data (i.e. sequence, NMR chemical shifts, etc.) or

derived data (i.e. estimated hydrophobicity) that is calcu-

lated from the raw data. We derived a set of five different

feature types from our chemical shift and sequence data.

The features included: (1) residue specific hydrophobicity,

(2) chemical shift-derived three-state secondary structure

probability, (3) random coil index values relating to flexi-

bility using backbone and side-chain chemical shifts

(Berjanskii and Wishart 2005, Berjanskii and Wishart

2013), (4) multiple sequence alignment derived residue

conservation score (Valdar 2002; Mayrose et al. 2004), and

(5) SABLE predicted ASA (Adamczak et al. 2004). These

features are explained in more detail below.

Residue specific hydrophobicity

Hydrophobicity is a widely used physico-chemical char-

acteristic of amino acids that is used to measure their rel-

ative water aversion. Hydrophobicity scales are numeric

scales that define the relative hydrophobicity of amino acid

residues. In general terms, the more positive the number,

the more hydrophobic the amino acid, and consequently the

more buried it is likely to be. Over the past few decades, a

number of different hydrophobicity scales have been

developed. We investigated six different hydrophobicity

scales to see which gave the best prediction results on a

validation set when combined with other features. The

scales we examined included Janin’s scale (Janin 1979),

Kyte and Doolittles’s scale (Kyte and Doolittle 1982),

Eisenberg’s scale (Eisenberg et al. 1984), Engelman’s scale

(Engelman et al. 1986), Hopp and Woods scale (Hopp and

Woods 1981) and Manavalan’s scale (Manavalan and

Ponnuswamy 1978). The best correlation was achieved

using Janin’s hydrophobicity values (data not shown).

Interestingly Janin’s scale was developed by analyzing the

relative surface accessibility of all 20 amino acid residues

from solved protein structures. In this regard Janin’s scale

is more a solvent accessibility scale than a hydrophobicity

scale.

Two different approaches were examined regarding how

to use hydrophobicity as a feature: (1) single-residue

hydrophobicity and (2) a running average of hydropho-

bicity over a 3-residue window. The first approach exhib-

ited a comparatively better correlation than the second one

(data not shown) and so this was incorporated in our fea-

ture set.

Chemical-shift derived secondary structure probability

The secondary structure probability of a residue is derived

from the secondary chemical shift value of its constituent

atoms. The secondary chemical shift (Dd) is defined as the

difference between the absolute chemical shift (dabs) and

the corresponding random coil (drc) shift (Wishart 2011).

Dd ¼ dabs � drc

The probability of a residue being in one of the three states

‘‘a-helix’’, ‘‘b-strand’’ or ‘‘coil’’ is derived from its six

backbone atom secondary chemical shifts, as described in

Wang and Jardetzky (2002). For each backbone atom, a

Gaussian probability distribution was assumed, where the

two parameters of the distribution corresponded to (1) the

average secondary chemical shift value for each of three

different secondary structure states and (2) the standard

deviation of the distribution. These statistical parameters

were derived from the ‘‘RefDB’’ database (Zhang et al.

2003). A more detailed description of the secondary

structure probability method is given by Wang and

Jardetzky (2002).

Random coil index

The random coil index (RCI) is a technique that can be

used to determine the flexibility of an amino acid residue in

a polypeptide chain from its backbone and side-chain

chemical shifts (Berjanskii and Wishart 2005, 2013). Both

390 J Biomol NMR (2015) 62:387–401

123



the backbone and side-chain RCI quantitatively trace the

relative amount to which a protein backbone and side-

chain’s chemical shifts match with the random coil values.

These features were calculated using the RCI equations

provided in the original RCI papers.

Residue conservation score

Residue conservation is a measure of how often a given

residue is seen at an equivalent position, in an equivalent

protein, across different species. Generally highly con-

served residues are buried within the protein core, while

less conserved residues are generally exposed or found in

loops (albeit with some exceptions). The conservation

score for each residue position is calculated as described by

Valdar (2002). First, a PSI-BLAST (Altschul et al. 1997)

search with three iterations for query sequence is done on

UniREf90 clustered database (UniProt Consortium. 2010).

Then a multiple sequence alignment is performed using

ClustalOmega (Sievers et al. 2011). The conservation score

for each column in the alignment (each residue in the target

sequence) is then calculated using Shannon’s entropy for-

mula as described below,

s xð Þ ¼ k
XK

a

pa log pa

where, pa is the probability of observing the ath amino acid

and, k is the scaling factor and defined as,

k ¼ log min N;Kð Þð Þ½ ��1

where N = number of sequences in the alignment,

K = length of amino acid alphabet. The probability of

observing ath amino acid is the summed weight of

sequences having the symbol a in the position x in the

sequence which is defined as,

pa ¼
X

wi

where, wi is the weight of the ith sequence. wi is defined as,

wi ¼
1

L

XL

x

1

kxnx

where, L = length of the alignment, kx = the number of

amino-acid types present at the xth position, nx = the

number of times the ath amino acid occurring in the ith

sequence at the xth position.

SABLE-predicted ASA

To further improve the performance of ShiftASA we sup-

plemented our method with another sequence-only ASA

prediction tool called SABLE (Adamczak et al. 2004).

SABLE is a pure sequence-based method for predicting

real-valued relative solvent accessibilities of amino acid

residues in proteins. It was initially developed using neural

network based regression models and later refined using

other linear regression models (Wagner et al. 2005). It has

a reported correlation coefficient between predicted and

experimental values of 0.64–0.67 on various test sets.

Because SABLE’s correlation coefficient was comparable

to the reported correlation of shift-based ASA estimations,

it was expected that including sequence estimated ASA

would enhance the performance of ShifASA. Therefore the

SABLE predicted real valued ASA for each residue was

included in the ShiftASA feature vector for the training and

test data points.

Local residue interactions

To take into account the local-residue interaction in the

protein structure, a 3-residue window feature set was used

throughout this study. Accounting for nearby residue-in-

teractions provides important information about local

geometry and the local environment that is accessible/non-

accessible to solvent.

Training the prediction model

The prediction model parameters were optimized so as to

obtain an estimator that minimized the (absolute) differ-

ence between actual output and predicted ASA values. The

model was also optimized to achieve a better correlation

between the observed and response (i.e. predicted) vari-

ables. With those two objectives in mind, a repeated ten-

fold cross-validation (CV) was performed to estimate the

optimal number of iterations (n.trees, T) and interaction

depth of each regression tree (interaction.depth, K) for our

SGBM. This was done after the model had been initially fit

on the set of 30 sample observations.

Optimization using tenfold repeated cross-validation

(CV) suggested that the optimal number of iterations

should be 180. That is, the final regression model best

approximates the response value after 180 gradient steps.

The second parameter estimated by the optimization pro-

cess was the optimal depth of interaction among the pre-

dictor variables in each regression tree. The optimal depth

of interaction was found to be eight (8). Specifically, the

loss function was minimized when eight predictor variables

were split in each regression tree.

Analysis of feature influence

During the optimization of ShiftASA, an analysis of the

feature influence was performed as a part of the boosting
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process. The top ten features are shown in Fig. 1. The

influence of the predictor variable (*X) indicates the rel-

ative importance or contribution of that variable in pre-

dicting the response (*Y) and can be estimated by the

weighting coefficient associated with that variable in the

method formulation. This analysis helped to identify those

variables that had the most significant influence on the

response. The weighting coefficients of all features are

described in Table S2 (see Supplementary Information).

Evaluation

The performance of ShiftASA was evaluated using several

different metrics. This was done to more completely

ascertain its performance against other methods as well as

to better assess the effects brought on by using different

weighting protocols. Specifically the following metrics

were used:

1. Root mean square error (RMSE)—RMSE is a statis-

tical measure that calculates the difference between the

values predicted by an estimator model and the actual

observed values. RMSE is the square root of the

average squared deviation between predicted and

actual values, and thus gives larger deviations more

weight. A smaller value indicates a better model

performance;

2. R2 or the coefficient of determination—R2 is a

statistical measure that indicates how well a set of

data points fit to a regression line or curve;

3. Spearman’s rank correlation coefficient (SRCC)—

SRCC is a non-parametric measure of the monotonic

relationship between two variables, irrespective of

whether their relationship is linear;

4. Mean absolute error (MAE)—MAE is the average of

the absolute errors in a prediction i.e. the absolute

difference between predicted and true values in a set of

outcomes. Unlike other measures, larger deviations are

not given additional weight;

5. Mean squared error (MSE)—MSE measures the aver-

age of the square of the ‘‘error’’ or deviation of the

estimator from the quantity being estimated. MSE

tends to heavily weight outliers.

Results and discussion

Training performance and feature importance

During the optimization process, a tenfold repeated cross-

validation protocol yielded the lowest RMSE (0.18) and the

best R-squared values (0.65) for the training data. The

weighting coefficients of all features are described in

Table S2. These data indicate that the SABLE (Adamczak

et al. 2004) estimated ASA at the central (i)th residue is the

most informative ASA predictor. The side-chain random

coil index, backbone random coil index and hydrophobic-

ity, were found to be next three most influential variables in

our fASA estimation. The next most important feature was

the random coil index value of the (i-1)th residue followed

by helix propensity of the (i)th and b-strand propensity of

the (i)th residue. The helix and b-strand propensities of the

central residue have comparatively higher importance they

often indicate that this residue is buried as buried residues

have a higher propensity to form a-helices and b-sheets in

proteins and have a tendency to interact with the residues in

the core region. Our analysis shows that central residue

features carry the most information content (occupying six

of the top seven positions), with exceptions of the flexi-

bility information of neighboring residues [the RCI value

of the (i - 1)th residue]. Although the SABLE estimation

Fig. 1 Top ten relevant

features in the SGBM method.

The importance of these

predictor variables or features is

normalized to a scale of 1–100.

The predictor variable names

are shown on the vertical axis
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is found to be the most relevant feature, the chemical shift

features also provide significant contribution a, roughly

equal to the SABLE feature at central residue position.

Residue hydrophobicity also carries useful information to

estimate the fASA. Other than the SABLE ASA estimation

and hydrophobicity, eight of the top ten features are

chemical-shift features, and have collectively larger

weights in the final formulation. It is notable that residue

conservation scores are not present among ten most rele-

vant features, which indicates their somewhat smaller

contribution to the feature set.

Test performance

The final parametric regression tree model generated by

repeated cross-validated optimization of the TRAIN set

was used to predict the fractional ASA values for proteins

in the TEST1 and TEST2 data sets. The Spearman corre-

lation coefficient was calculated between the actual fASA

and the predicted fASA using both our ShiftASA method

and five other models. The results are shown in Tables 1

and 2 (Table S1 lists the individual performance of all

TEST1 proteins). As seen in Table 1, the mean correlation

coefficient for the predicted fASA values for ShiftASA of

0.79. This corresponds to an 8.2 % improvement over the

best sequence-only and a 22 % improvement over chemi-

cal shift-only prediction methods. The prediction accuracy

of the different methods was also evaluated using other

statistical metrics and is shown in the same table.

Table 1 also shows that ShiftASA reports the highest

mean prediction accuracy among all five methods that were

evaluated. The mean absolute error was decreased from

0.20 (the best MAE among other methods) to 0.14 Å2 with

ShiftASA, which is a 26 % improvement over the best

sequence-only method. The mean squared error also

decreased to 0.03 from 0.07 Å2 as measured over all

TEST1 proteins. Moreover, ShiftASA shows the lowest

deviation in Spearman’s rank correlations. These data

indicate that ShiftASA is not only the most accurate, but

also the most consistent among the five methods. Bar plots

exhibiting the mean Spearman’s rank correlations and the

corresponding standard deviations reported by the five

methods are shown in Fig. 2.

The Spearman correlation coefficients for the TEST2

proteins as well as other statistical measures from predic-

tions derived by ShiftASA, SABLE (Adamczak et al. 2004)

and Side-chain RCI (Berjanskii and Wishart 2013) are

shown in Table 2. As seen in this table, ShiftASA esti-

mation has a correlation of 0.82, whereas SABLE’s and

Side-chain RCI’s correlations are 0.67 and 0.73 respec-

tively. The mean absolute error is also significantly

decreased (0.14 compared to 0.31 and 0.14 compared to

0.23).

Examples of the per-residue correlation for the predicted

fASA values of two protein chains, the double-sided ubiq-

uitin binding of Hrs-UIM (PDB ID: 2D3G(B)) and a puta-

tive dinitrogenase iron-molybdenum cofactor from

Thermotoga maritima (PDB ID: 1O13(A)) are displayed in

Figs. 3 and 4 respectively. The first example shows a strong

correlation (0.82) between SHIFTASA and the observed

fASA. For the second example, a stronger correlation (0.86)

is evident, compared to the correlations (0.72, 0.62 and 0.67)

reported by three other methods, namely SABLE (Adam-

czak et al. 2004), RVPNet (Ahmad et al. 2003), and Side-

chain RCI (Berjanskii and Wishart 2013). As seen in Figs. 3

and 4, ShiftASA yields better agreement in matching the

observed ASA amplitude, which certainly contributes to its

higher correlation coefficients.

Buried-exposed and buried-intermediate-exposed

classification

Categorical ASA measures are still commonly used in the

field of ASA prediction and evaluation. However, no uni-

versal threshold for categorical prediction of buried and

exposed states exists and so fractional ASA (fASA) is

Table 1 The mean absolute error (MAE), mean squared error (MSE),

root mean squared error (RMSE), mean Spearman’s correlation, and

the standard deviation of Spearman’s correlation for all six fASA

prediction methods (including ShiftASA, with and without SABLE)

evaluated over the TEST1 set (65 test proteins) [64 proteins for side-

chain RCI]

Evaluation metric ShiftASA

(w SABLE)

ShiftASA

(w/o SABLE)

SABLE

(Seq.)

RVPNet

(Seq.)

SARpred

(Seq.)

Side-chain RCI

(Chem. shift)

MAE 0.14 0.16 0.19 0.20 0.24 0.20

MSE 0.03 0.04 0.07 0.07 0.09 0.07

RMSE 0.19 0.02 0.26 0.26 0.31 0.26

Minimum Spearman correlation 0.72 0.70 0.54 0.47 0.21 0.22

Mean Spearman correlation 0.79 0.76 0.73 0.60 0.38 0.59

Maximum Spearman correlation 0.86 0.83 0.82 0.70 0.67 0.77

SD (Spearman correlation) 0.04 0.03 0.07 0.05 0.15 0.12
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generally considered to be a more reliable estimation of

residue-specific solvation status. Nevertheless, we per-

formed a detailed evaluation of ShiftASA’s performance

for categorical ASA prediction. Two-state and three-state

classification of residue fractional ASA values for different

threshold systems were calculated based on the real-value

fASA predictions by ShiftASA, SABLE (Adamczak et al.

2004) and RVPNet (Ahmad et al. 2003). The number of

residues in each (Exposed, Intermediate or Buried) class

using different threshold cutoffs is described in Table 3.

The accuracy and precision of classification results are

shown in Table 3.

The performance of ShiftASA for two-state and three-

state classification of real-value solvent accessibility using

different threshold values was found to be comparable or

higher (in most cases) than that of RVPNet (Table 3).

ShiftASA also showed consistently high accuracy (C80 %)

for all threshold values in the two-state classification.

Three-state classifications (buried-intermediate-exposed)

were challenging for the current method (although Shif-

tASA reports better accuracies than RVPNet). The proba-

ble reason might be the lower estimation accuracies

associated with more exposed residues (fASA

range &0.6–1.0—see ‘‘Discussion’’ section for more

details).

Discussion

The performance of ShiftASA is clearly superior to other

methods for fASA prediction. Obviously the inclusion of

Table 2 The mean absolute error (MAE), mean squared error (MSE),

root mean squared error (RMSE), mean Spearman correlation

coefficient, and the standard deviation of Spearman correlation

coefficient for ShiftASA (with and without SABLE), SABLE

(Adamczak et al. 2004) and Side-chain RCI (Berjanskii and Wishart

2013) evaluated over the TEST2 set

Evaluation metric ShiftASA (w SABLE) ShiftASA (w/o SABLE) SABLE (Seq.) Side-chain RCI (Chem. shift)

MAE 0.14 0.15 0.31 0.23

MSE 0.03 0.04 0.16 0.09

RMSE 0.18 0.02 0.41 0.30

Minimum Spearman correlation 0.67 0.76 0.20 0.27

Mean Spearman correlation 0.82 0.79 0.67 0.73

Maximum Spearman correlation 0.89 0.88 0.85 0.84

SD (Spearman correlation) 0.04 0.03 0.12 0.07

Fig. 2 Mean Spearman

correlation coefficient and the

standard deviation of

correlations of all five fASA

prediction models (including

ShiftASA) are shown. The

performance is measured over

the TEST1 data set. The mean

correlation associated with each

method is shown at the top of

each bar diagram
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experimental information (i.e. NMR chemical shifts)

means that additional information, beyond sequence data,

is being exploited in the prediction process. However,

unlike most other sequence-based fASA predictors, Shif-

tASA also makes use of residue-specific hydrophobicity to

help with its prediction. This is based on the fact that there

is a strong relationship between residue-specific

hydrophobicity and solvent exposure (Manavalan and

Ponnuswamy 1978). Indeed, several hydrophobicity scales

have been derived by calculating the solvent accessible

surface area for residues in solved proteins or by employ-

ing empirical solvation parameters derived from calculated

surface areas (Chothia 1976; Biswas et al. 2003). Because

ShiftASA employs both chemical shifts and residue-

specific hydrophobicity, it would be of interest to analyze

the predictive ability of sequence alone and chemical shift

alone to estimate fractional ASA values. In addition it

would also be useful to explore how ShiftASA’s prediction

accuracy varies as the fraction of complete shift assignment

changes. In the following subsections, we investigated

these two issues along with other issues based on the

performance of the TEST1 proteins.

Sequence and chemical-shift based prediction: combined

versus alone

To address the issue of predictive accuracy for sequence-

only versus shift-only versus combined, another two

Fig. 3 Agreement between predicted and observed residue-specific

fASA values by SABLE, RVPNet, Side-chain RCI and ShiftASA

for the putative dinitrogenase iron-molybdenum cofactor from

Thermotoga maritima (PDB ID: 1O13, chain A). The corresponding

BMRB ID is 6198. The Spearman correlation coefficient is shown in

the centre of each graph
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stochastic gradient boosting regression tree models were

developed and trained using sequence-only and chemical

shift-only training features for each residue in a 3-residue

window. Parameter optimization indicated the optimal

‘‘number of trees’’ as 150 and 225 and the optimal ‘‘in-

teraction depth’’ as six (6) and eight (8) respectively for the

final regression trees of these sequence-only and chemical

shift-only models. The optimized models were then eval-

uated on TEST1 proteins. Figure S1 shows the correlation

between the actual and predicted fASA values using the

sequence-only and chemical shift-only prediction models.

For comparative purposes, the correlations of ShiftASA’s

predictions are also shown. The graph clearly shows a

significant performance difference. Note that, the mean

correlation for our sequence-only prediction is 0.60 (for the

65 protein test set). The green line in the graph shows the

correlation between chemical shift derived parameters and

fASA values, which is 0.46. These results show that the

performance improvement seen for ShiftASA was not just

achieved through the use of sequence-derived parameters,

but also by the sensible use of chemical shift data.

It is also interesting to compare this sequence-only

method with the four sequence-only fASA prediction sys-

tems we evaluated in this study, namely, SABLE (Adam-

czak et al. 2004), RVPNet (Ahmad et al. 2003) and

SARpred (Garg et al. 2005). SABLE, RVPNet and

Fig. 4 Agreement between the predicted and observed residue-

specific fASA values for SABLE, RVPNet, Side-chain RCI and

ShiftASA for ubiquitin bound to Hrs-UIM (PDB ID: 2D3G, chain B).

The corresponding BMRB ID is 6457. The Spearman correlation

coefficient is shown on the right of each graph
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SARpred all are neural network-based prediction systems.

SABLE uses feed-forward neural networks that estimate

real value RSA’s based on information derived from the

PSI-BLAST (Altschul et al. 1997) position specific scoring

matrix (PSSM), hydrophobicity, volume, entropy and sec-

ondary structure propensity of amino acids in a running

window of 11 residues. The second method (RVPNet) uses

only sequence data with adjacent neighbor information

encoded in a binary (0/1) sequence, and the last method

(SARpred) method feeds multiple sequence alignments

into a two-stage neural network to predict fASA. For the

TEST1 proteins, SABLE achieved a mean correlation of

0.73 and RVPNet achieved a correlation of 0.60, whereas

the correlation of SARpred was found to be 0.38. With the

exception of SABLE, the other two methods (RVPNet and

SARpred) appear to be either comparable or significantly

worse than our sequence-only approach.

Prediction error versus complete shift assignments

Recent studies (Marsh 2013; Berjanskii and Wishart 2013)

have demonstrated a correlation between fASA and local

flexibility as well as global flexibility. Marsh (2013) found

a mean correlation of 0.61 between RCI-predicted local

flexibility and residue-specific fractional ASA over a set of

monomeric proteins. Likewise, Berjanskii and Wishart

(2013) found a correlation of 0.74 between the side chain

RCI (a chemical shift-derived parameter) and residue

specific fASA over a set of 15 proteins. However, one of

the limitations of these RCI-based methods is that a com-

plete or near-complete chemical shift assignment is

required to achieve relatively moderate prediction accu-

racy. In the present study, we found the mean Spearman

correlation of the side-chain RCI method over protein in

TEST1 to be 0.59, which was somewhat less than what was

originally reported (albeit using a different set of proteins).

It was also found that the side-chain RCI method was

particularly sensitive to missing or incomplete assign-

ments. This is reflected in the spread of up to 12 % in the

Spearman correlation coefficient distributed over the

TEST1 set. Fortunately, one of the strengths of ShiftASA is

the fact that it is not solely dependent on side-chain

chemical shifts but also on the relatively more easily

measured backbone chemical shifts. Furthermore, when all

of the described sequence and chemical-shift derived fea-

tures (see ‘‘Materials and methods’’ section) are combined,

ShiftASA’s accuracy does not vary significantly in the

absence of complete shift assignments. This invariance is

shown using the line connected by red diamonds in Fig-

ure S2. We believe the robustness that ShiftASA exhibits to

missing chemical shifts is due to the redundancy in infor-

mation that is available from both sequence and

Table 3 Two-state and three-state mean classification accuracy and precision of fASA for the TEST1 set reported by ShiftASA, SABLE

(Adamczak et al. 2004) and RVPNet (Ahmad et al. 2003) for different threshold systems

Threshold system ShiftASA SABLE RVPNet

Accuracy Precision Accuracy Precision Accuracy Precision

0 % (2-state)

#B = 823, #E = 6711

0.90 0.89 0.80 0.80 0.89 0.90

5 % (2-state)

#B = 1672, #E = 5862

0.81 0.80 0.84 0.82 0.79 0.80

10 % (2-state)

#B = 2202, #E = 5332

0.82 0.78 0.76 0.75 0.77 0.77

15 % (2-state)

#B = 2603, #E = 4931

0.82 0.80 0.78 0.78 0.76 0.76

25 % (2-state)

#B = 3420, #E = 4114

0.81 0.78 0.76 0.73 0.74 0.74

50 % (2-state)

#B = 5246, #E = 2288

0.81 0.80 0.70 0.66 0.72 0.73

10–20 % (3-state)

#B = 2202, #I = 808, #E = 4524

0.71 0.68 0.72 0.62 0.67 0.67

15–25 % (3-state)

#B = 2603, #I = 817, #E = 4114

0.72 0.69 0.66 0.67 0.65 0.65

25–50 % (3-state)

#B = 3420, #I = 1826, #E = 2288

0.66 0.62 0.58 0.50 0.54 0.55

The number of buried (#B), intermediate (#I) and exposed (#E) residues for each threshold system are shown in the first column

J Biomol NMR (2015) 62:387–401 397

123



neighboring residue chemical shift data. On the other hand,

chemical shift-only estimation performance varies with the

amount of complete shift assignments and shows a Pearson

correlation coefficient of 0.75 (depicted by a line connected

by blue rectangles in Fig. S2).

Prediction error versus residue specific variance in test set

ASA distribution

Figure S3 illustrates the relationship between the standard

deviation of the fASA value for each of the 20 different

amino acids in the test set and the corresponding fASA

prediction error. The variance in the fASA values shows a

relatively good agreement with the prediction error (MAE),

yielding a Spearman correlation coefficient of 0.93. In

general, the prediction error in fASA values for exposed

residues is higher than for buried residues. Frequently

buried and partially buried residues such as CYS, ILE,

VAL, PHE, TYR, TRP and LEU have comparatively lower

variability in the observed fASA values, leading to the

lower associated prediction errors. Among these residues,

CYS, ILE and VAL have less than a 10 % mean prediction

error, while others are within a 10-13 % error range. This

might be because buried residues generally have a more

conserved fASA distribution, as can be seen in Fig. S3. In

contrast, exposed and partially exposed residues such as

ASP, GLU, PRO and GLY have a much higher (C17 %)

mean estimation error. ASN, GLN, SER, HIS and ALA fall

into the medium range of prediction errors (15–16 %).

These increased prediction errors might be a consequence

of the high fASA variability seen in exposed residues (see

Fig. S3). The most difficult residue to predict is ASP,

which produces the highest mean prediction error of

19.3 %. All aromatic residues (PHE *11 %, TRP *12 %,

TYR *13 %) are within a 13 % error limit, which again

confirms their relatively buried nature or their affinity to

associate with residues in buried regions. Overall our data

show that buried and partially buried residues are predicted

with relatively higher accuracy than exposed, partially

exposed or charged residues. More exposed residues tend

to have fewer assignments due to their higher mobility,

higher overlap, and lower importance to researchers.

ASA range versus prediction error versus training point

fractions

The error distribution with the fASA value range and the

corresponding sample training size revealed some inter-

esting and unexpected trends. These are shown in Fig. S4.

The training fraction curve reveals that there is a relative

abundance of chemical shift (and ASA) data for buried and

partially buried regions of proteins, which facilitates higher

prediction accuracies in those regions. As training fractions

slowly decrease for higher fASA ranges (partially exposed

and fully exposed residues), so does the prediction accu-

racy for those residues. This trend partially explains why

ShiftASA performs somewhat differently in estimating the

accessible surface area of buried, partially buried, partially

exposed and fully exposed residues in proteins.

Fig. 5 Per-residue fASA

values for unfolded ubiquitin

(BMRB ID: 4357). The red,

green and blue line indicates the

estimated fASA by ShiftASA,

the average fASA from 10,000

simulated unfolded structures of

ubiquitin and the estimated

fASA by SABLE respectively
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SABLE improves prediction performance

In ShiftASA, we tried to incorporate as much information

as available both from sequence and chemical shifts in

order to achieve optimal performance. Because of the

excellent performance of the sequence-only method

SABLE (Adamczak et al. 2004) we decided to include its

sequence-based prediction into the ShiftASA algorithm.

Indeed, this addition led to an increase of mean correlation

coefficients between predicted and experimental values

from 0.76 to 0.79 (TEST1) and 0.79 to 0.82 (TEST2). This

improvement is statistically significant (p\ 0.001). Evi-

dently SABLE’s sequence-driven structural homology and

evolutionary profile based prediction provides additional

information that helps to accurately estimate the

buried/exposed states of residues.

ShiftASA accurately estimates fractional ASA

of ‘‘unfolded’’ proteins

We also investigated the performance of ShiftASA for

estimating fractional ASA values for a completely unfol-

ded protein (i.e. unfolded ubiquitin in 8 M urea—BMRB

4375). As a substitute for observed fASA values, an

average per-residue fASA value is calculated from 10,000

unfolded structures of ubiquitin generated using the

Fig. 6 A montage of the ShiftASA webserver showing the home page (left) and several screenshots of the output pages (right)
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computer program Flexible Meccano (Ozenne et al. 2012).

As seen in Fig. 5, ShiftASA was able to estimate the

exposed state of this protein with a moderate accuracy. In

contrast to the sequence-only method, SABLE (Adamczak

et al. 2004) most of the protein was estimated to contain a

high proportion of buried regions. Because SABLE pre-

dicts the fractional ASA from sequence, it simply reported

the ASA states of the folded ubiquitin structure retrieved

by a PSI-BLAST (Altschul et al. 1997) search. However,

because ShiftASA weighs both the experimental chemical

shift information with sequence-derived features, its per-

formance was not compromised.

The ShiftASA web server

A web server (http://shiftasa.wishartlab.com) has been

developed that accepts a BMRB (NMR-Star 2.1 or NMR-

Star 3.1) or SHIFTY-formatted chemical shift file and

generates per-residue fractional ASA (in both horizontal

and vertical formats) along with a fractional ASA plot. The

server supports a number of user-selectable options

including the choice of using sequence homology for the

SABLE (Adamczak et al. 2004) prediction. The web server

has been implemented as a Python CGI-script. In general,

the web server takes\60 s (if homology is off) or[140 s

(if homology is on). A screen shot of the ShiftASA web

server and its output is shown in Fig. 6.

Conclusion

We have developed a method that accurately predicts the

per-residue fASA of water-soluble proteins using a combi-

nation of both sequence and chemical shift data. Our pre-

diction method, called ShiftASA, demonstrates superior

performance relative to sequence-only or chemical shift-

only methods in two independent test sets of 65 and 92

proteins (TEST1 and TEST2, respectively). In particular,

with the TEST1 data set, ShiftASA showed a mean Spear-

man’s rank correlation coefficient between predicted and

experimental values of 0.79, which is a 8.2 % improvement

over the best performing method. The mean absolute error

was found to drop from 0.19 to 0.14 Å2 and the root mean

squared error fell from 0.26 to 0.19 Å2 compared to its

sequence-only and chemical shift-only counterparts. On the

TEST2 set, ShiftASA attained a mean correlation coeffi-

cient of 0.82, a clear improvement over correlation coeffi-

cients of 0.67 and 0.73 reported by the best performing

sequence-only and chemical-shift-only methods, respec-

tively. In addition, the real-value fASA prediction by Shif-

tASA allows flexible, categorical prediction of binary or

ternary ASA states. Overall, we believe that ShiftASA, with

its improved prediction of ASA parameters, will not only

facilitate protein fold recognition and de novo protein

structure prediction methods, but as we will show in

upcoming papers, contribute to the generation and refine-

ment of protein structures by NMR and the calculation of

useful thermodynamic parameters from chemical shift data.
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